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Plasma-wall boundary layers

V. Baritello, F. Porcelli, and F. Subba
Istituto Nazionale di Fisica della Materia and Politecnico di Torino, 10129 Torino, Italy

~Received 4 November 1998; revised manuscript received 10 May 1999!

According to a well established result, boundary layers develop in plasmas near solid surfaces. By means of
a one-dimensional two-fluid model, we analyze the influence of charge separation and ion viscosity upon the
layer structure. This leads to a critical discussion of the Bohm criterion. We find that, in the viscous limit,
quasineutrality holds even at values of the Mach number above unity. A nonlinear boundary value problem is
defined. Asymptotic matching techniques are used to resolve the structures of the boundary layers.
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I. INTRODUCTION

The insertion of a solid surface into a plasma leads to
formation of a boundary layer@1–3#, i.e., a region character
ized by a strong variation of the principal plasma properti
In the present paper we shall identify this layer with t
region of suprathermal ion fluid velocity. This problem
relevant to plasmas of thermonuclear as well as indus
interest. In a fusion plasma, fuel ions~normally deuterium
and tritium nuclei! hitting the wall cause the release of hea
ion impurities~sputtering!, contaminating the plasma and e
hancing radiative thermal losses. As for plasma of indust
interest, the wall bombardment is exploited for the depo
tion of thin films and the formation of microstructures on t
surface of semiconductors~plasma etching!.

Our investigation employs a two-fluid plasma mod
However, fluid theory is not complete, and it is clear tha
consistent theory of the sheath should employ the kin
approach@4,5#. In particular, the value of the electrostat
potential at the wall~the so-calledfloating potential! is de-
termined by kinetic considerations@6#. If the wall is biased,
the wall potential relative to the plasma can be control
externally. The fluid approach is very promising in modeli
some of the main features of the sheath physics, becau
allows one to employ much simpler mathematical tools@7#.
A possible compromise, adopted in this paper, is to util
the value of the wall potential as a free parameter; in the c
of unbiased walls, this value must correspond to that de
mined by kinetic theory. However, this approach gives r
to some inconsistencies, especially in the case where
viscosity is important, which will be pointed out later in th
paper.

A relevant criterion which characterizes the presence o
boundary layer is the so called Bohm criterion@8#. This
states that a small electric field extends into the plasma an
sufficient to accelerate the ions such that at the entranc
the layer they attain a drift velocity equal to the therm
speed@6,3,9,10#. A widespread opinion is that quasineutra
ity breaks down in the layer, where the ion velocity excee
the thermal speed. In this paper, we show that ion visco
can allow quasineutrality to be kept even at values of
Mach number@11# exceeding unity. We also discuss how t
ionic source changes as a function of the wall potentia
such a way that, under stationary conditions, it becomes
PRE 601063-651X/99/60~4!/4733~10!/$15.00
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eigenvalue of the mathematical model.
The layout of the paper is as follows. In Sec. II we pres

the fluid model equations, and we state a minimal set
boundary conditions. In the plasma region outside the la
a simplified ideal model can be used, where quasineutral
is assumed and dissipation can be neglected. In Sec. III
point out the appearance of a singularity corresponding to
Mach surfaceM51. We also discuss two types of source
S5const andS}n, wheren is the charged particle density
In Sec. IV we consider the boundary layer structure@12# in
the nonviscous limit. We also discuss the special role of
normalized ion sourceS as the eigenvalue of the model. I
Sec. V, we consider the effects of a finite ion viscosity on
boundary layer structure. In both Secs. IV and V we comp
the complete numerical solutions with those obtained
means of asymptotic matching techniques@12#. In Sec. VI,
we discuss our results.

II. FLUID MODEL

We study a stationary model for a fully ionized plasm
composed by electrons and one singly charged ion spe
starting from Braginskii equations@13#. The simplest geom-
etry is a one-dimensional box2L<z<L, limited by two
walls at z56L. Moreover, for the sake of simplicity, we
consider the magnetic field to be absent or aligned along
z direction, which is normal to the walls, so that it will no
appear explicitly in the model equations. For realistic situ
tions, in controlled fusion experiments, the field lines m
intersect the wall with a small angle, and thus the ions can
scraped off from a stand-off distance of a Larmor radi
creating a presheath@10,14#. We do not treat this case her
Nevertheless, we point out that recent investigations of re
tive interchange instabilities on open field lines relevant
tokamak scrape-off layers adopt the same geometry as in
paper as far as magnetic field lines are concerned@15#. As-
suming that the electrons follow the Boltzmann law, which
reasonable due to their high mobility, then, neglecting ter
of orderme /mi!1, the ion dynamics decouples from that
the electrons. Another simplification we adopt is that of co
stant temperatures. Mass and momentum balance, tog
with Poisson’s and Boltzmann’s laws, yield the fluid mod
for the variablesni , v i , w, andne ,
4733 © 1999 The American Physical Society
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d

dz
~niv i !5Si , ~1!

miniv i

dv i

dz
52Ti

dni

dz
2eni

dw

dz
1

d

dz S m
dv i

dz D2miSiv i ,

~2!

ne5n0 expS ew

Te
D , ~3!

d2w

dz2 54pe~ne2ni !. ~4!

In these equations,ni (e) is the ion~electron! density,v i is the
ion fluid velocity,Si is the ion source,mi (e) is the ion~elec-
tron! mass,2e is the electron charge,w is the electrostatic
potential, Ti (e) is the ion ~electron! temperature, andm
.nil i(miTi)

1/2 is the ion viscosity coefficient, withl i the
collisional mean free path@13#. Note thatl i}Ti

2/ni , so that
for Ti5const the coefficientm does not depend onz. We
consider a singly charged ion species~the charge is1e).

Under the assumption of stationary equilibrium, the el
tron and ion currents,Je,i57ene,ive,i , must be equal at the
wall. The model assumes that one electron and one pos
ion neutralize at the wall and then recycle as a neutral at
which ionizes at some distance from the wall into t
plasma, giving rise to the ionization source profileSi(x) in
Eq. ~1!. The situation we describe corresponds to full cha
recycling.

We now introduce the dimensionless quantities

x5
z

L
, z5

ew

Te
, S5

LSi

n0cs
, ~5!

M5
v i

cs
, «5

lD

L
, n5

ni

n0
, g5

m

min0csL
[

1

Re
, ~6!

wherecs5A(Te1Ti)/mi is the thermal speed,L is the half
width of our domain,n0 is the ion density at the midplan
location (z50)T, lD5(Te/4pn0e2)1/2 is the Debye length,
M5v i /cs is the Mach number, andRe is the Reynolds’
number. Expressingm in terms of the ion temperature, den
sity, and mass, we can also writeg;@Ti /(Ti1Te)#1/2l i /L.
With these normalizations, Eqs.~1!–~4! become

d

dx
~nM!5S, ~7!

nM
dM

dx
52n

dz

dx
2a2S dn

dx
2n

dz

dxD1g
d2M

dx2 2SM, ~8!

«2
d2z

dx2 5exp~z!2n, ~9!

wherea5@Ti /(Ti1Te)#1/2, and we have used Boltzmann
law @Eq. ~3!# to eliminatene .

A complete set of boundary conditions for the model i

z~0!50, z8~0!50, z~61!5zwall . ~10!
-

ve
,

e

The corresponding conditions onn and M can be obtained
from those for the normalized electrostatic potentialz. In
particular, the first condition is a reference value for the p
tential, while the second is suggested by symmetry consi
ations. The last boundary condition introduces the param
zwall , which from kinetic considerations equals the floati
potentialzwall5zfloat, where

zfloat5 ln~meTi /miTe!
1/2. ~11!

Note that the choicez(1)5z(21), together withS, an even
function of z, introduces a parity for the relevant solution
such thatn(z)5n(2z), z(z)5z(2z) andM (z)5M (2z).

III. IDEAL REGION

Equations ~7!–~9! form a strongly nonlinear system
which, together with Eq.~10!, involves the formation of
boundary layers. The parameters« andg appearing in these
equations are typically very small. Therefore, the terms th
multiply will be important only in a narrow region near th
wall, where the velocity and the potential vary rapidly. F
from the walls, in the ideal region, these terms can be
glected. In the limit«, g→0, Eqs.~7!–~9! can be rewritten in
the forms

d

dx
~nM!5S, ~12!

nM
dM

dx
52n

dz

dx
2SM, ~13!

exp~z!2n50. ~14!

Note that the term depending ona disappears in the idea
region because of the quasineutrality assumption. From E
~12! and~13!, we can write the following relation for the ion
velocity:

~12M2!
dM

dx
5

S

n
~11M2!. ~15!

Equation~15! clearly shows the appearance of a singular
in the ideal solution corresponding to Mach numberM51. It
is interesting to express this singularity condition in terms
the potentialz. To this aim we consider the densityn as a
function of the ion velocity:n5n(M ). If we use the conti-
nuity equation~12! to eliminate the sourceS in Eq. ~13!, we
obtain an equation fordn/dM, whose solution is@6#

n5
1

11M2 , ~16!

from which we obtain

z52 ln~11M2!. ~17!

In particular, Eq.~17! states that the singularity of the ide
solution corresponds to the potential valuez52 ln(2). The
electric fieldE52dz/dx diverges at this point. Generally
from Eqs.~12! and~16! it is possible to write the expressio
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FIG. 1. Potential profiles in the ideal region for two different types of sources. Line~1! refers to the choiceS5const, while line~2!
corresponds toS5ln. The two curves are matched so as to have a singularity atx50.9. Correspondingly, we obtainS50.556 for curve~1!
andl50.634 for curve~2!. ~All the plotted quantities are dimensionless!.
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S~x8!dx8[G~x!. ~18!

Equation~18! is a biquadratic equation forez. The regular
solution in the origin is

z~x!5 ln
1

2
@11A124G2~x!#. ~19!

Combining Eq.~16! with Eqs.~17! and~19! gives the corre-
sponding expressions for the density and the ion velocity

n~x!5
11A124G2~x!

2
, ~20!

M ~x!5
12A124G2~x!

2G~x!
. ~21!

These results are subject to the restriction 0<G(x)<1/2. If
this restriction is satisfied for all the intervalxP@0,1#, then
no boundary layer develops. However, in this case the w
potential must be 0>zwall> ln(1/2). For more negative val
ues ofzwall, G(x) must reach the value 1/2 at some distan
from the wall. Thus a link betweenzwall and the ion source is
established.

Note that no particular hypothesis about the ion sourcS
has been made up to now. A particularly simple choice
S5const. Then, the value ofS is determined as an eigen
value condition in terms of the wall potential. This will b
investigated in the next sections. Here we discuss ano
form for Sof interest in many practical situations, whereS is
determined by the collisions of the electrons with the re
cling neutrals@9#. In this case, we may assume the ion sou
to be proportional to the electron density:

S5l exp~z!, ~22!
ll

e

s

er

-
e

wherel is a proportionality constant. Eliminating the sour
term using Eq.~22! and solving the resulting equation, w
obtain

M ~x!5tan$ 1
2 @lx1M ~x!#%, ~23!

from which we obtain

dM

dx
5

l

cos~lx1M !
. ~24!

As we can see, the singularity is located at the pointxs ,
which satisfies the relationlxs115p/2. We may now com-
bine Eqs.~16! and ~23! to obtain an expression for the den
sity n. Then Eq.~23! leads to the following implicit relation
for the potential:

z~x!52 lnXcosH 1

2
@lx1Aexp„2z~x!…21#J C. ~25!

It is interesting to compare the profile ofz(x) obtained by
solving Eq. ~25! numerically with that in Eq.~19! for the
much simpler choiceS5const. Figure 1 shows this compar
son. The parameters for the two curves areS50.556 andl
50.634, which give the same value ofxs50.9 in the two
cases. As we can see immediately, the profiles are very c
to each other. For this reason, in the following we shall re
to the simplest choiceS5const, except if stated otherwise

IV. NONDISSIPATIVE BOUNDARY LAYER

In principle, the complete~i.e., up to the wall! potential
profile in the non dissipative limit may be obtained by so
ing a single third-order differential equation. To show th
we introduce the new independent variabley5x2 and the
function
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w~y!52E
0

y

z~Ay8!dy8. ~26!

Then, from Eqs.~7!–~9!, with S5const, we obtain

«2@4yw-~y!12w9~y!#2
Sy

@2„yw8~y!2w~y!…#1/2

1exp@2w8~y!#50. ~27!

The corresponding boundary conditions are

w~0!50, w8~0!50, w8~1!52zwall . ~28!

Conditions~28! are immediately evident from the definitio
of w and conditions~10! for z. It is not difficult to give a
physical interpretation ofSas an eigenvalue for the bounda
value problems~27! and ~28!. Particle conservation implie
Sizs5nscs , which can be rewritten asS5Lns /zsn0 where
ns5n(zs) and zs is the location whereM (zs)51 for the
complete solution. It is now intuitive thatLns /zsn0 depends
on zwall . Also note that sincens;0.5n0 , the value ofS will
stay approximately close to one-half. In Figs. 2 and 3,

FIG. 2. Potential profiles numerically calculated for differe
values of the Debye length: rotating clockwise, we obtain«53
31023, «5531023 and«5731023, respectively. For all cases
S50.52. ~All the plotted quantities are dimensionless.!

FIG. 3. Dependence of the source eigenvalueS on the wall
potentialzwall . The normalized Debye length is«5331023. ~All
the plotted quantities are dimensionless.!
e

show numerical solutions for the electrostatic potential
different values ofe and the dependence of the source eig
value on the wall potential.

It is natural to try and find an approximate solution of E
~27! by asymptotic matching techniques. First of all, we t
to estimate the boundary layer thickness. As discusse
Sec. III, a boundary layer forms forS. 1

2 . As it appears from
Eqs.~18! and~19!, the singular pointxs for the ideal solution
is a function of the normalized sourceS. For S5const, we
obtainxs51/2S. Then, the boundary layer thickness may
estimated asD5121/2S. For typical plasma parameter
numerical calculations show thatD<1022 in correspon-
dence toe.1026 and zwall.zfloating. In order to find an
equation for the potential near the solid wall, we introdu
the layer variablej5(x2xs)/e. Referring to Fig. 4, we see
that theouteror ideal solution holds up toxs ~i.e., the begin-
ning of the layer!. In particular, the electrostatic potential i
the layer~inner region! should obey a simplified differentia
equation with boundary conditionz5zwall at j5(12xs)/e.
An overlapping region@12# where the ideal equation hold
and the layer equation is valid must exist for the matching
be possible. As can be seen from Fig. 4, this interval l
entirely to the left (j,0) of the singular pointxs .

The layer equation must be solved subject to the condi
that it matches asymptotically to the ideal solution within t
overlapping interval. We propose the following layer equ
tion:

1

2 S dz

dj D 2

5ez~j!1F1

2
~D2z~j!!

2u~2j!S S«j1
8

3
~2S«j!3/2D G1/2

1u~2j!@S«j12~2S«j!3/2#1C, ~29!

whereu(y) is the Heaviside function. This equation is d
rived in the Appendix. We find it necessary to retain terms
ordere3/2, as these terms are essential to reproduce the
rect behavior of the layer solution in the matching interv
In particular, the constantsC andD are integration constant
to be determined by asymptotic matching. Unfortunately, E
~29! cannot be solved analytically. Nonetheless, it is mu
simpler than Eq.~27!, which is valid over the entire plasm
region. Thus we can solve Eq.~29! by a simple numerical
procedure. We point out that, once the suitable match
interval is determined numerically, the integration consta
C and D are practically insensitive to the specific poi

FIG. 4. Schematic view of the geometry of the matching inter
between the plasma and the sheath potential profiles.~All the plot-
ted quantities are dimensionless.!



io
a
th

ts
th

is

n
-

tu

ra

at
i

a

ue

s
th
s

os
on

-

th,
te

-
th
re-
any
ther
ma
n a
es-
ed

.

lue
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within that interval where they are evaluated. The integrat
constantsC and D are to be determined in such a way th
the boundary layer solution and the ideal solution have
same functional form in the overlapping~matching! region
for a given value ofzwall . Thus we determine these constan
by imposing that both the inner and ideal solutions have
same first and second derivatives in a suitable pointj* of the
overlapping interval.

The numerical determination of the matching interval
illustrated in Fig. 5. One can see thatzwall is practically in-
dependent of the choice ofj* for j1,j* ,j2 with j15
22.5 andj2522.0 determined numerically for the chose
parameterse50.003 andzwall523.15. In this case, we ob
tain S.0.52,C.0.995, andD.0.20.

V. VISCOUS BOUNDARY LAYER

We now consider the viscous case. In the present si
tion, both the terms depending ong ande could, in principle,
generate a boundary layer. In fact, in most situations of p
tical interest, the collision mean free pathl i is usually much
larger than the Debye length, over which the electrost
layer develops. Consequently, we will study the problem
the limit e/g→0. In the case of a constant source, we m
eliminate M and n from Eqs. ~7!–~9! and obtain a second
order differential equation for the electrostatic potentialz,

gSx
d2z

dx2 1~2gS2S2x21e2z~x!!
dz

dx
2gSxS dz

dxD
2

12S2x50,

~30!

subject to the boundary conditions

z~0!50, z~1!5zwall . ~31!

Note that the conditionz8(0)50 is now implied by Eqs.
~30! and~31!. Again, this equation defines a boundary val
problem for the eigenvalueS.

A numerical integration of Eq.~30! has been performed
for g51022. The resulting profile is shown in Fig. 6. Thi
figure also shows the potential profile obtained from
more realistic sourceS5ln. As we can see, the two profile
are nearly identical, so the simplifying assumptionS
5const is again not so bad.

It is interesting to evaluate the length scale of the visc
ity effects. To this aim, we integrate the continuity equati
and write M (x)5Sxe2z(x), from which, in the limitx→1
with udz/dxu@1, we obtain

FIG. 5. Dependence ofzwall on j* . The constancy ofzwall for j*
varying in the interval~22.5, 22.0! clearly shows the matching
interval. ~All the plotted quantities are dimensionless.!
n
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e

a-

c-

ic
n
y

e

-

dM

dx
;Se2z~x!S 2

dz

dxD52Sn
dz

dx
. ~32!

Taking account of Eq.~32! and of the relationsgdM/dx
@1 andnM;S, from Eq. ~8! we obtain the dominant bal
ance

g
d2M

dx2 ;S
dM

dx
. ~33!

Equation~33! can be integrated to giveM (x);A1e(x21)S/g

1A2 , which, as an estimate for the viscous scale leng
yieldsd;g/S. Figure 7 shows a comparison of this estima
with the numerical solution of Eq.~30! for different values of
g/S, where we have definedd;@d ln z(x)/dx#x51

21 .
Since S'0.5, recalling thatg;l i /L for (Ti;Te), we

find dm;l i , wheredm is the viscous scale length in dimen
sional units. Thus the validity of this result is marginal wi
respect to the adopted fluid viscosity operator, which
quires the collisional mean free path to be not larger than
other characteristic scale length in the problem. On the o
hand, a diffusion-type operator for the transport of plas
momentum may also be justified in terms of fluctuations i
weakly turbulent plasma. The corresponding quantitative
timate for a turbulent viscosity coefficient will be discuss
in Sec. VI.

FIG. 6. Potential profiles in the domain 0<x<1 for S5const
~dashed line! and S5ln ~solid line!. The viscosity coefficient is
g5331023 and the source eigenvalues areS50.539 and l
50.539, respectively.~All the plotted quantities are dimensionless!

FIG. 7. Width of the viscous layer. The dots represent the va
of d as a function of the ratiog/s. The eigenvalueS is tuned so as
to keep the wall potential fixed at the floating valuezwall;23,
while g varies in the interval 531023<g<331022. The interpo-
lating line outlines the accuracy of the linear scaling ofd as a
function of g/s. ~All the plotted quantities are dimensionless.!
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FIG. 8. Comparison of the potential profile
obtained by the numerical solution of the com
plete equation~a! and by matching technique
~b!. For both curves, S50.539 and g53
31023. ~All the plotted quantities are dimension
less.!
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Next we derive a simplified equation for the potential
the boundary layer. In the limitx→1, Eq. ~30! becomes

gS
d2z

dx2 1~2gS2S21e2z!
dz

dx
2gSS dz

dxD
2

12S250.

~34!

In the validity domain of the ideal solution, the followin
relation must be valid:

gS
d2z

dx2 !2S2. ~35!

Equation ~35!, combined with the ideal solution~19!, is
equivalent to

12x/xs@g2/3, ~36!

with xs51/2S. Moreover, the ideal solution~19! shows that

d2z

dx2 @S dz

dxD
2

, e2z~x!2S2@2gS. ~37!

Equations~35! and~37! allow one to write an equation valid
in the boundary layer extensible to a matching inter
within the ideal region. Introducing the layer variable

y5~x21!S/g, ~38!

the desired equation takes the form

d2z

dy2 1S 1

S2 e2z~x!21D dz

dy
2S dz

dyD
2

12
g

S
50. ~39!

Moreover, from Eq.~36! we obtain the following analytic
estimate for the matching interval:

g2/3!12
x

xs
!1. ~40!
l

It is convenient to introduce the new functionu(z)
5dz/dy. With this substitution, Eq.~40! becomes

u~z!
du

dz
1S 1

S2 exp~2z!21Du~z!2u2~z!12
g

S
50.

~41!

Equation~41! is still too difficult to be solved analytically;
however, it can be easily solved numerically. To match c
rectly the obtained solution with the ideal expression~19!,
we use the following strategy.

We choose a matching pointxM in the interval defined by
Eq. ~40!; with the aid of Eqs.~19! and ~38!, we obtain the
corresponding valueszM[zM(xM), and defineuM5u(zM).
We useuM as the initial value in the integration of Eq.~41!
within the intervalz* <z<zM , wherez* is chosen smaller
thanzwall . Finally we useu(z)5dz/dy and Eq.~38! to ob-
tain the profilez(x) for the rangexM<x<1. Figure 8 shows
the comparison of the matched solution with the compl
one forg5331023 andS50.539. Figure 9 shows how th
matching accuracy improves asg→0. We represent the
matching accuracy as uzmatch(1)2zcompl(1)u/zcompl(1),
wherezmatch(1)5zwall obtained for a givenS by asymptotic
matching whilezcompl(1)5zwall obtained for the sameS by
the numerical solution of the complete equation. Figure
compares the complete numerical solution and the match
solution for S as a function ofzwall . The integration of the
continuity equation~with S5const) yieldsnM5Sx, while
quasineutrality givesn5ez.

At this point an important question must be raised: wha
the appropriate value ofzwall to be used in conjunction with
the adopted viscous fluid model? If the valuezwall5zfloat is
used, as suggested by kinetic theory, for the Mach numbe
the wall we obtain

Mwall5Sezwall5~miTe /meTi !
1/2S. ~42!

Assuming a hydrogen plasma withTe5Ti and S. 1
2 yields

Mwall.20. This value ofMwall is exceedingly large and
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FIG. 9. Matching accuracy u„żmatch(1)
2zcomp(1)…/zcompl(1)u as a function ofg. All the
calculations are performed withS50.502. ~All
the plotted quantities are dimensionless.!
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clearly violates ion energy conservation; therefore, res
~42! must be rejected. It is of interest, however, to und
stand what goes wrong in this case. As we pointed ou
Sec. I, the fluid model is not complete: the concept of flo
ing potential is borrowed from kinetic theory. The point
that the kinetic prescriptionzwall5zfloat must be usedto-
gether with the kinetic result that the potential drops by
value O(zfloat) over a distance of the order of the Deb
length. Therefore, in the limit where the collisional me
free path is larger than the Debye length, the validity of
fluid model stops a few Debye lengths from the wall, as
model cannot allow spatial variations belowl i . Thus the
boundary valuez5zwall for the fluid equations must be in
tended as the value of the potential a few Debye lengths f
the wall. The appropriate value must be such thatMwall re-
mains of order unity, although valuesMwall>1 are allowed.
Unfortunately, the present model cannot determine the e
value ofzwall to be used in the viscous limit.
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VI. DISCUSSION AND CONCLUSIONS

In this paper, we have revisited the physics of the bou
ary layers that form in plasmas near solid surfaces. A
consequence of the high mobility of the electrons relative
that of the ions, the solid surface naturally acquires a ne
tive voltage, as large as a few timesTe /e for the case of
floating potential. This negative voltage accelerates the i
to velocities exceeding the thermal speed~Mach numbers
M.1).

Our investigation has adopted a simplified two-flu
model for the plasma, with the concept of floating potent
borrowed from kinetic theory. Clearly, our model is n
physically complete; however, it is useful in that it illustrat
basic features of the relevant processes and reduces
mathematical treatment to the essential.

From a mathematical point of view, under stationary co
ditions the model reduces to a nonlinear boundary va
problem for the electrostatic potential, with the ion sour
-

te
n.
FIG. 10. Source as a function of the wall po
tential at fixedg5331023. A comparison of the
results obtained by integration of the comple
equation and by matching techniques is show
~All the plotted quantities are dimensionless.!
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TABLE I. Values of the characteristic parameters of the edge region for different types of plasmaLc is
the connection length, the distance between the solid walls measured along the magnetic field. Th
parameters are defined in the text.~All the plotted quantities are dimensionless.!

JET DITE
ALCATOR

C
Plasma

processing

Te (eV) 50 15 7 1
ne (cm23) 431012 331012 431013 1010

Lc(cm) 43103 43102 102 50
l i (cm) 6.43102 76 1 13
lD (cm) 2.631023 1.731023 331024 7.531024

m ~g cm21 s21! 2.831022 1.431023 2.131024 2.131026

« 6.531027 4.331026 331026 1.531025

g 1.131021 1.331021 8.531023 1.831021
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playing the role of the eigenvalue to be determined a
function of the wall potential. More precisely, we have co
sidered two types of ion sources,S5const andS5ln, with
n the normalized ion density and the proportionality const
l the eigenvalue for this second choice. A useful resul
that the obtained solutions are quantitatively very similar
the two cases.

The boundary value problem has been integrated num
cally. We have also found approximate solutions by me
of asymptotic matching techniques. We have shown tha
order to apply these techniques rigorously, a minimal eq
tion must be considered in the boundary layer. This equat
however, is still nonlinear and too difficult to solve analy
cally; on the other hand, it is much simpler to solve nume
cally than the complete boundary layer problem. The st
egy to obtain approximate solutions over the entire region
means of this~say semianalytic! approach is illustrated in the
paper.

To compare the electrostatic and the viscous limits of
model let us refer to Table I, where values of the relev
parameter for three tokamak fusion experiments@16# @the
Joint European Tours~JET!, the Divertor Injection Tokamak
Experiment~DITE!, and the ALCATOR C experiment at th
Massachusetts Institute of Technology# and for a typical
plasma of industrial interest are considered. We see that
all these plasmas, the ratioe/g;lD /l i is indeed very small,
which reflects the fact that the Debye length is norma
much smaller than the collisional mean free path.

In the viscous limit, the singularity developed by the ide
equations in correspondence of the region where the M
number reaches unity is resolved by viscosity. Thus the
tance from the wall whereM reaches unity is of the order o
the ion collisional mean free path, which can be as large
10% of the connection length~the distance, 2L, between the
two plates in the model; see Table I!. This should be of
interest, for instance, in the modeling of the edge region
tokamak plasmas, the so calledscrape-off layer. In fact, the
modelling is often based on fluid codes~such as the code
EDGE2D adopted at JET@17#! which neglect the boundar
layer and assume the boundary conditionM51 at the edge
of the integration region. This procedure is justified if t
boundary layer is very thin; however, this procedure wo
be questionable if the plasma region whereM exceeds unity
could become a considerable fraction of the scrape-off la

Nevertheless, we point out that results for the visco
a
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ri-
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e
t

or

l
ch
s-

s

f
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s

limit are marginally valid with respect to the considered v
cosity diffusion operator. This operator is derived under
assumption that the collisional mean free path is not lar
than any other characteristic length in the plasma, while
have found that the width of the viscous boundary layer is
fact of the order ofl i . An alternative way of justifying a
diffusion operator for the transport of plasma momentu
density is by consideration of turbulent transport process
Suppose that fluctuations introduce a random scattering
the ion trajectories, which can be modeled as a random w
process. Then the turbulent diffusion coefficient becom
m t;minil t

2/t t , wherel t andt t are, respectively, the char
acteristic correlation length and correlation time of the flu
tuations. Experimental measurements in confined plasma
thermonuclear interest indicate that transport processe
these plasmas are indeed ‘‘anomalous,’’ i.e., they do not
low collisional scaling laws. While theoretical understandi
of turbulent transport processes predicting the parameterl t
andt t is still elusive, we can rely on experimental measu
ments to obtain a quantitative estimate ofm t . If Lc is the
typical size of the plasma~e.g., the connection length! and
texpt is the experimental value of the momentum density c
finement time, then we can estimatem t;miniLc

2/texpt. The
‘‘anomalous viscosity’’ scale length for the boundary lay
by the wall becomesd t;Lc

2/cstexpt. Using, for instance, JET
parameters withtexpt;0.5 sec, we obtaind t;5 cm, which is
smaller than the collisional mean free path, but still mu
larger than the Debye length.
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APPENDIX

In this appendix we present the derivation of Eq.~29!. By
using the new variablej5(x2xs)/S, model equations~7!–
~9! take the forms

d

dj
~nM!5«S, ~A1!
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n~j!M ~j!
dM

dj
52n

dz

dj
2«SM~j!, ~A2!

d2j

dj2 5exp@z~j!#2n~j!. ~A3!

The continuity equation~A1! can be easily integrated to giv

n~j!M ~j!5 1
2 1«Sj, ~A4!

while Eq. ~A2! can be rewritten in the energy conservati
form

d

dj S 1

2
M2~j!1z~j! D52«S

M ~j!

n~j!
. ~A5!

We now look for a suitable form of the Poisson equation.
this aim, we multiply equation~A3! by dz/dj:

d

dj

1

2 S dz

dj D 2

5
d

dj
ez~y!2

1

2

1

M ~j!

dz

dj
2«

S

M ~j!
j

dz

dj
.

~A6!

By dividing ~A2! by the productn(j)M (j), we obtain an
expression for the potential derivative:

2
1

M ~j!

dz

dj
5

dM

dj
1«

S

n~j!
. ~A7!

We now use Eq.~A7! to eliminate the term (1/M )dz/dj in
Eq. ~A6!. The result is

d

dj

1

2 S dz

dj D 2

5
d

dj S ez~j!1
1

2
M ~j! D1

1

2
«

S

n~j!

2«
S

M ~j!
j

dz

dj
. ~A8!

From Eqs.~A5! and ~A8!, we can derive a model for th
boundary layer. In the inner part of the electrostatic sheat
suitable approximation is obtained simply by neglecting
the terms multiplied by the small parameter«. It is easy to
perform a first integration, and to write

1

2 S dz

dj D 2

5ez~j!1
1

2
M ~j!1C, ~A9!

1

2
M2~j!1z~j!5D, ~A10!
n

o

a
ll

whereC andD are obviously the integration constants. U
fortunately, it turns out that Eqs.~A9! and ~A10! do not
reproduce the behavior of the ideal solution at the limit of t
ideal region; therefore, they cannot be used for asympt
matching purposes. To obtain a smooth match we must
tain terms up to order«3/2. To this end, we expand the ex
pressions forM andz in the ideal region in powers of«. We
obtain the following expressions:

M ~j!;
1

2n~j!
;122~2S«j!1/2, ~A11!

1

2
M2~j!

dz

dj
;2~2S«j!1/2. ~A12!

If we substitute the last expressions in Eqs.~A5! and ~A8!,
we can obtain two equations corresponding to Eqs.~A9! and
~A10!:

1

2
M2~j!1z~j!522S«j2

16

3
~2S«j!3/21D,

~A13!

1

2 S dz

dj D 2

5ez~j!1
1

2
M ~j!1S«j12~2S«j!3/21C.

~A14!

Equations~A13! and ~A14! allow a good matching with the
ideal solution. They are valid in the last part of the ide
region (j<0), while Eqs.~A9! and~A10! refer to the inner
part of the boundary layer. We can put the two expressi
in a more compact form by introducing the Heaviside fun
tion:

u~y!5 H1,
0,

y.0
y,0 . ~A15!

Then we write

1

2
M2~j!1z~j!5u~2j!F22S«j2

16

3
~2S«j!3/2G1D,

~A16!

1

2 S dz

dj D 2

5ez~j!1
1

2
M ~j!1u~2j!@S«j12~2S«j!3/2#1C.

~A17!

Finally, eliminating the ion velocity from Eqs.~A16! and
~A17!, we obtain Eq.~29! in the main text.
n
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