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Plasma-wall boundary layers
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According to a well established result, boundary layers develop in plasmas near solid surfaces. By means of
a one-dimensional two-fluid model, we analyze the influence of charge separation and ion viscosity upon the
layer structure. This leads to a critical discussion of the Bohm criterion. We find that, in the viscous limit,
quasineutrality holds even at values of the Mach number above unity. A nonlinear boundary value problem is
defined. Asymptotic matching techniques are used to resolve the structures of the boundary layers.
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[. INTRODUCTION eigenvalue of the mathematical model.
The layout of the paper is as follows. In Sec. Il we present

The insertion of a solid surface into a plasma leads to théhe fluid model equations, and we state a minimal set of
formation of a boundary laygd—3], i.e., a region character- boundary conditions. In the plasma region outside the layer,
ized by a strong variation of the principal plasma propertiesa simplifiedideal model can be used, where quasineutrality
In the present paper we shall identify this layer with theis assumed and dissipation can be neglected. In Sec. Il we
region of suprathermal ion fluid velocity. This problem is point out the appearance of a singularity corresponding to the
relevant to plasmas of thermonuclear as well as industriallach surfaceM =1. We also discuss two types of sources:
interest. In a fusion plasma, fuel iorisormally deuterium  S=const andS=n, wheren is the charged particle density.
and tritium nuclej hitting the wall cause the release of heavy |n Sec. IV we consider the boundary layer struct{&2] in
ion impurities(sputtering, contaminating the plasma and en- the nonviscous limit. We also discuss the special role of the
hancing radiative thermal losses. As for plasma of industriahormalized ion sourc& as the eigenvalue of the model. In
interest, the wall bombardment is exploited for the deposisec. Vv, we consider the effects of a finite ion viscosity on the
tion of thin films and the formation of microstructures on the houndary layer structure. In both Secs. IV and V we compare
surface of semiconductofplasma etching the complete numerical solutions with those obtained by

Our investigation employs a two-fluid plasma model. means of asymptotic matching techniquiég]. In Sec. VI,
However, fluid theory is not complete, and it is clear that awe discuss our results.
consistent theory of the sheath should employ the kinetic
approach[4,5]. In particular, the value of the electrostatic
potential at the wallthe so-calledloating potential is de- Il. FLUID MODEL
termined by kinetic consideration6]. If the wall is biased,
the wall potential relative to the plasma can be controlled We study a stationary model for a fully ionized plasma
externally. The fluid approach is very promising in modelingcomposed by electrons and one singly charged ion species
some of the main features of the sheath physics, becausesitarting from Braginskii equatior[43]. The simplest geom-
allows one to employ much simpler mathematical tdals  etry is a one-dimensional box L<z=<L, limited by two
A possible compromise, adopted in this paper, is to utilizewalls atz==*=L. Moreover, for the sake of simplicity, we
the value of the wall potential as a free parameter; in the caseonsider the magnetic field to be absent or aligned along the
of unbiased wallls, this value must correspond to that deterz direction, which is normal to the walls, so that it will not
mined by kinetic theory. However, this approach gives riseappear explicitly in the model equations. For realistic situa-
to some inconsistencies, especially in the case where iotions, in controlled fusion experiments, the field lines may
viscosity is important, which will be pointed out later in the intersect the wall with a small angle, and thus the ions can be
paper. scraped off from a stand-off distance of a Larmor radius,

A relevant criterion which characterizes the presence of &reating a presheaft10,14. We do not treat this case here.
boundary layer is the so called Bohm criterip8]. This = Nevertheless, we point out that recent investigations of resis-
states that a small electric field extends into the plasma and is/e interchange instabilities on open field lines relevant to
sufficient to accelerate the ions such that at the entrance dbkamak scrape-off layers adopt the same geometry as in this
the layer they attain a drift velocity equal to the thermalpaper as far as magnetic field lines are concefid&fl As-
speed6,3,9,10. A widespread opinion is that quasineutral- suming that the electrons follow the Boltzmann law, which is
ity breaks down in the layer, where the ion velocity exceedgeasonable due to their high mobility, then, neglecting terms
the thermal speed. In this paper, we show that ion viscositpf orderm./m;<1, the ion dynamics decouples from that of
can allow quasineutrality to be kept even at values of thehe electrons. Another simplification we adopt is that of con-
Mach numbef11] exceeding unity. We also discuss how the stant temperatures. Mass and momentum balance, together
ionic source changes as a function of the wall potential invith Poisson’s and Boltzmann’s laws, yield the fluid model
such a way that, under stationary conditions, it becomes thfor the variables;, v;, ¢, andng,
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d The corresponding conditions onand M can be obtained
gz (nvi) =S, (1) from those for the normalized electrostatic potentalln
particular, the first condition is a reference value for the po-

dv dn de d dv tential, while the second is suggested by symmetry consider-
mnvi——=—T———en—+ — ( ,u_') -mSv;, ations. The last boundary condition introduces the parameter
dz dz dz dz\" dz Lwan» Which from kinetic considerations equals the floating
(2) potential {yai= {fioat, Where
Ne="g exp{ t_ar_<p) , 3) Ltoar=IN(MET; /M To) V2 11
e
Note that the choicé(1)=¢(—1), together withS an even
d?e function of z, introduces a parity for the relevant solutions
a2 ~4mene—m). (4 such than(z)=n(-2), {(2)=¢(—2) andM(2)=M(—2).
In these equationsy, is the ion(electron density,v; is the Ill. IDEAL REGION

ion fluid velocity, S; is the ion sourcem; ) is the ion(elec-
tron) mass,—e is the electron chargey is the electrostatic
potential, Ti(e) is the ion (electron temperature, andu
=n;\(mT;) Y2 is the ion viscosity coefficient, with; the
collisional mean free patfi3]. Note that\;«T?/n;, so that
for T,=const the coefficieniu does not depend on We
consider a singly charged ion speciéise charge iste).

Equations (7)—(9) form a strongly nonlinear system
which, together with Eq(10), involves the formation of
boundary layers. The parameterand y appearing in these
equations are typically very small. Therefore, the terms they
multiply will be important only in a narrow region near the
wall, where the velocity and the potential vary rapidly. Far

Under th i f stat b the el from the walls, in the ideal region, these terms can be ne-
nder the assumption 8 stationary equilibrium, the e ec'glected. In the limite, y—0, Eqs.(7)—(9) can be rewritten in
tron and ion currents]e ;= *eng Ve, Must be equal at the the forms

wall. The model assumes that one electron and one positive
ion neutralize at the wall and then recycle as a neutral atom, d
which ionizes at some distance from the wall into the &(nM)=S, (12
plasma, giving rise to the ionization source profggx) in

Eqg. (1). The situation we describe corresponds to full charge

4 dMm d
recycling. nM— = —n—g—SM, (13
We now introduce the dimensionless quantities dx ax
e LS ex —n=0. 14
T (5) e (9
¢ ovs Note that the term depending andisappears in the ideal
Vi Ao n u 1 region because of the q.uasineutrality assum_ption. From Egs.
M=—, e=—, n=—, y= =—, (6) (12) and(13), we can write the following relation for the ion
Cs L No m;ngCsL  Re

velocity:

wherecs=+/(T.+T;)/m; is the thermal speed, is the half dM S
width of our domain,ng is the ion density at the midplane (1-M2)—=—(1+M?). (15
location =0)T, A\p=(T/4mn,e?)*? is the Debye length, dx n
M=v;/cgs is the Mach number, an®, is the Reynolds’
number. Expressing in terms of the ion temperature, den-
sity, and mass, we can also wrife-[T;/(T;+ T¢)]¥2\; /L.
With these normalizations, Eq€l)—(4) become

Equation(15) clearly shows the appearance of a singularity

in the ideal solution corresponding to Mach number 1. It

is interesting to express this singularity condition in terms of

the potentialf. To this aim we consider the densityas a

d function of the ion velocityn=n(M). If we use the conti-

d—x(nM):S, (7) nuity equation(12) to eliminate the sourc8in Eq. (13), we
obtain an equation fodn/dM, whose solution i$6]

MdM_ d ,(dn d¢ d’M oM (@ 1
"M T "ax ¥ lax "ax T ae . ® n=17m2 (16)
d2 . .
Szd—xg=exp(§)—n, (9 from which we obtain
(=—In(1+M?). (17)

wherea=[T;/(T;+T,)]*? and we have used Boltzmann’s
law [Eq. (3)] to eliminaten,. In particular, Eq.(17) states that the singularity of the ideal
A complete set of boundary conditions for the model is Solution corresponds to the potential valfie —In(2). The
electric fieldE= —d{/dx diverges at this point. Generally,
£(0)=0, £'(0)=0, {(=1)=L,ya- (10 from Egs.(12) and(16) it is possible to write the expression
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FIG. 1. Potential profiles in the ideal region for two different types of sources. (dineefers to the choic&= const, while line(2)
corresponds t&=\n. The two curves are matched so as to have a singularky-&t9. Correspondingly, we obta= 0.556 for curve(1)
and\ =0.634 for curve(2). (All the plotted quantities are dimensionlgss

_ X where\ is a proportionality constant. Eliminating the source
efVe {-1= fo S(x")dx' =G(x). (18 term using Eq.(22) and solving the resulting equation, we
obtain
Equation(18) is a biquadratic equation fag‘. The regular .
solution in the origin is M(x)=tan{z [Ax+M(x)]}, (23
1 from which we obtain
g(x):In§[1+ V1—4G?(x)]. (19
dM A
Combining Eq.(16) with Eqgs.(17) and(19) gives the corre- dx  cogAx+M)’ (24

sponding expressions for the density and the ion velocity:

As we can see, the singularity is located at the paint
1+1-4G*(x) which satisfies the relationx,+ 1= 7/2. We may now com-

n(x)= 2 ' (20 bine Egs.(16) and(23) to obtain an expression for the den-
sity n. Then Eq.(23) leads to the following implicit relation
1-1-4G%(x) for the potential:
M(x)= 260 (21

{(x)=2 |n(COﬁ’%[7\X+ vexp(—¢(x))— 1]] ) (25

These results are subject to the restricticr®(x) <1/2. If

this restriction is satisfied for all the intervak [0,1], then

no boundary layer develops. However, in this case the wallt is interesting to compare the profile ¢{x) obtained by

potential must be & ¢,,=In(1/2). For more negative val- solving Eq.(25) numerically with that in Eq(19) for the

ues of .1, G(X) must reach the value 1/2 at some distancemuch simpler choic&= const. Figure 1 shows this compari-

from the wall. Thus a link betweefy,,; and the ion source is son. The parameters for the two curves &re0.556 andh

established. =0.634, which give the same value ®{=0.9 in the two
Note that no particular hypothesis about the ion so@ce cases. As we can see immediately, the profiles are very close

has been made up to now. A particularly simple choice igo each other. For this reason, in the following we shall refer

S=const. Then, the value & is determined as an eigen- to the simplest choic&=const, except if stated otherwise.

value condition in terms of the wall potential. This will be

investigated 'in the next sections.. Herg we discuss gnother IV. NONDISSIPATIVE BOUNDARY LAYER

form for Sof interest in many practical situations, wh&és

determined by the collisions of the electrons with the recy- In principle, the completéi.e., up to the wall potential

cling neutrald9]. In this case, we may assume the ion sourceprofile in the non dissipative limit may be obtained by solv-

to be proportional to the electron density: ing a single third-order differential equation. To show this,

we introduce the new independent varialgle x> and the
S=\exp({), (22 function
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0 FIG. 4. Schematic view of the geometry of the matching interval
0.92 0.94 0.96 0.98 1 between the plasma and the sheath potential profildthe plot-
ted quantities are dimensionless.
X

FIG. 2. Potential profiles numerically calculated for different
values of the Debye length: rotating clockwise, we obtain3
x 1073, £=5%10"2 ande=7x10"3, respectively. For all cases,
S=0.52.(All the plotted quantities are dimensionless.

y
wiy) == [ eyay 29
Then, from Eqs(7)—(9), with S=const, we obtain
e2[4yw" (y)+2w"(y)]— Sy

i I 2w (y)—wiy)I™

+exd —w’'(y)]=0. (27)
The corresponding boundary conditions are

w(0)=0, w'(0)=0, W' (1)=—{wan- (28)

Conditions(28) are immediately evident from the definition
of w and conditions(10) for £. It is not difficult to give a
physical interpretation dbas an eigenvalue for the boundary
value problemg27) and (28). Particle conservation implies
Sizg=ngCs, which can be rewritten aS=Lng/z;ny where
ns=n(zs) and z is the location whereM(z;)=1 for the
complete solution. It is now intuitive thétng/zsny depends
on {1 - Also note that sinceg~0.5n, the value ofSwill

stay approximately close to one-half. In Figs. 2 and 3, we
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FIG. 3. Dependence of the source eigenvafien the wall
potential £, . The normalized Debye length is=3x 1073, (All
the plotted quantities are dimensionléss.

show numerical solutions for the electrostatic potential for
different values of and the dependence of the source eigen-
value on the wall potential.

It is natural to try and find an approximate solution of Eq.
(27) by asymptotic matching techniques. First of all, we try
to estimate the boundary layer thickness. As discussed in
Sec. lll, a boundary layer forms f&> 3. As it appears from
Egs.(18) and(19), the singular poink; for the ideal solution
is a function of the normalized sour& For S=const, we
obtainxgs=1/2S. Then, the boundary layer thickness may be
estimated asA=1-1/2S. For typical plasma parameters,
numerical calculations show that<10 2 in correspon-
dence toe=10"% and {,= {fioating- 1N order to find an
equation for the potential near the solid wall, we introduce
the layer variable€= (x—xg)/e. Referring to Fig. 4, we see
that theouteror ideal solution holds up tg; (i.e., the begin-
ning of the laye). In particular, the electrostatic potential in
the layer(inner region should obey a simplified differential
equation with boundary conditiofi= ¢, at é=(1—Xs)/e.

An overlapping regiorf12] where the ideal equation holds
and the layer equation is valid must exist for the matching to
be possible. As can be seen from Fig. 4, this interval lies
entirely to the left €<0) of the singular poinks.

The layer equation must be solved subject to the condition
that it matches asymptotically to the ideal solution within the
overlapping interval. We propose the following layer equa-
tion:

2

1
_ =& 4+

2

E
dé

1
5(D=¢(&)

12

—0<—§>(Se§+§(—585>3’2

+0(—&)[Seé+2(—Se6)¥+C, (29
where 6(y) is the Heaviside function. This equation is de-
rived in the Appendix. We find it necessary to retain terms of
order €%?, as these terms are essential to reproduce the cor-
rect behavior of the layer solution in the matching interval.
In particular, the constants andD are integration constants
to be determined by asymptotic matching. Unfortunately, Eq.
(29) cannot be solved analytically. Nonetheless, it is much
simpler than Eq(27), which is valid over the entire plasma
region. Thus we can solve E{R9) by a simple numerical
procedure. We point out that, once the suitable matching
interval is determined numerically, the integration constants
C and D are practically insensitive to the specific point
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g FIG. 6. Potential profiles in the domaink<1 for S=const
(dashed ling and S=xn (solid line). The viscosity coefficient is
FIG. 5. Dependence df,,; on £&. The constancy of,,,, for & y=3x10"% and the source eigenvalues af=0.539 and\
varying in the interval(—2.5, —2.0) clearly shows the matching =0.539, respectivelyAll the plotted quantities are dimensionless.
interval. (All the plotted quantities are dimensionless.

within that interval where they are evaluated. The integration —~Seg (™ n—. (32
constantsC and D are to be determined in such a way that dx dx

the boundary layer solution and the ideal solution have the )

same functional form in the overlappirigratching region ~ Taking account of Eq(32) and of the relationsydM/dx
for a given value of,,,,. Thus we determine these constants>1 andnM~S, from Eq. (8) we obtain the dominant bal-
by imposing that both the inner and ideal solutions have thé&fce

same first and second derivatives in a suitable p8iraf the

dM ; (—%):—s d¢

overlapping interval. d’™M _dM
The numerical determination of the matching interval is VW”SW- (33

illustrated in Fig. 5. One can see thgj,, is practically in-
dependent of the choice aff for & <&*<é, with &=
—2.5 andé,= —2.0 determined numerically for the chosen
parameters=0.003 and{,,,;= — 3.15. In this case, we ob-
tain S=0.52,C=0.995, and=0.20.

Equation(33) can be integrated to givil (x) ~A,eX~ Sy
+A,, which, as an estimate for the viscous scale length,
yields 6~ y/S. Figure 7 shows a comparison of this estimate
with the numerical solution of Eq30) for different values of
vlS, where we have defined~[dIn g(x)/dx];jl.

Since S~0.5, recalling thaty~N\;/L for (T,~T,), we

We now consider the viscous case. In the present situdind 5, ~\;, whereé, is the viscous scale length in dimen-
tion, both the terms depending grande could, in principle, ~ sional units. Thus the validity of this result is marginal with
generate a boundary layer. In fact, in most situations of practespect to the adopted fluid viscosity operator, which re-
tical interest, the collision mean free pathis usually much — quires the collisional mean free path to be not larger than any
larger than the Debye length, over which the electrostati®ther characteristic scale length in the problem. On the other
layer develops. Consequently, we will study the problem inhand, a diffusion-type operator for the transport of plasma
the limit e/ y—O0. In the case of a constant source, we maymomentum may also be justified in terms of fluctuations in a
eliminateM and n from Egs.(7)—(9) and obtain a second weakly turbulent plasma. The corresponding quantitative es-
order differential equation for the electrostatic potentjal timate for a turbulent viscosity coefficient will be discussed

V. VISCOUS BOUNDARY LAYER

, , in Sec. VI.
d d d
nyd—X§+(2ys—s2x2+e24<X>)d—f(— ny(d—i) +2S%x=0, - -
(30) '
0.12
subject to the boundary conditions 0.1
8
£{(0)=0, {(1)={yar- (3D 0-08
0.06
Note that the conditior’ (0)=0 is now implied by Egs. 0.04 /
(30) and(31). Again, this equation defines a boundary value 0.0z /
problem for the eigenvalug. ’
A numerical integration of Eq(30) has been performed 0
for y=10"2. The resulting profile is shown in Fig. 6. This o .01 ©0.02 0.03 0.04
figure also shows the potential profile obtained from the
more realistic sourc€=An. As we can see, the two profiles 7S

are nearly identical, so the simplifying assumptich FIG. 7. Width of the viscous layer. The dots represent the value

=const is again not so bad. ) of & as a function of the ratig//s. The eigenvalu&is tuned so as
It is interesting to evaluate the length scale of the viscosty keep the wall potential fixed at the floating valdg~ — 3,

ity effects. To this aim, we integrate the continuity equationwnhile y varies in the interval % 10 3< y<3x 10 2. The interpo-
and write M (x) =Sxe ¢®, from which, in the limitx—1  lating line outlines the accuracy of the linear scaling dfs a
with |dZ/dx|>1, we obtain function of y/s. (All the plotted quantities are dimensionless.
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& mab FIG. 8. Comparison of the potential profiles
obtained by the numerical solution of the com-
o=l plete equation(@) and by matching techniques
(b). For both curves, S=0.539 and y=3
sl %1073, (All the plotted quantities are dimension-
less)
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Next we derive a simplified equation for the potential in It is convenient to introduce the new functiam({)

the boundary layer. In the limik—1, Eq.(30) becomes =d{/dy. With this substitution, Eq(40) becomes
d?¢ d¢ d¢\? du (1 Y
VSWHZVS—SZJFE“) ax 73(& +28°=0. U(é)d—g+(S7€Xp(2§)—1)U(£)—u2(é’)+2§=0-
(34) (41)
In the validity domain of the ideal solution, the following Equation(41) is still too difficult to be solved analytically;
relation must be valid: however, it can be easily solved numerically. To match cor-
) rectly the obtained solution with the ideal expressi@#),
Sd ¢ <232 (35) we use the following strategy.
YX0x2 ' We choose a matching poir}, in the interval defined by

Eq. (40); with the aid of Eqs(19) and(38), we obtain the
Equ_ation (35), combined with the ideal solutiofl9), is  corresponding valuegy, =y (xy), and defineuy=u(y).
equivalent to We useu,, as the initial value in the integration of EG1)
o3 within the interval* <¢<¢,,, where?* is chosen smaller
1=xIxs> 7y, (36 than¢,.. Finally we useu(¢)=d¢/dy and Eq.(38) to ob-
tain the profileZ(x) for the rangexy,<x=<1. Figure 8 shows

with x;=1/2S. Moreover, the ideal solutio(l9) shows that the comparison of the matched solution with the complete

42 [de)\2 one fory=3x10"3 and S=0.539. Figure 9 shows how the
_2>(_ . e _g25248, (377  matching accuracy improves ag—0. We represent the
dx* \dx matching accuracy  as|Zmarei{ 1)~ Zoomp(1)l/ Lcomp( 1),

) , i ., where{naed 1) = {wan Obtained for a givers by asymptotic

_Equatlons(35) and(37) allow one to write an equatlon_valld matching whileZomp(1)= ¢ Obtained for the samé by
in the boundary layer extensible to a maiching intervalihe nymerical solution of the complete equation. Figure 10
within the ideal region. Introducing the layer variable compares the complete numerical solution and the matching
solution forS as a function of¢,,,. The integration of the
continuity equation(with S=const) yieldsnM=Sx, while
quasineutrality givesi=e¢.

At this point an important question must be raised: what is

y=(x-1)Sly, (39)

the desired equation takes the form

d2c (1 d¢ (dZ\2  y the appropriate value af,,4 to be used in conjunction with
—+| e —1| =~ _> +22—0. (399 the adopted viscous fluid model? If the valfig, = {foqt IS
dy \S dy \dy S used, as suggested by kinetic theory, for the Mach number at

. . . the wall we obtain
Moreover, from Eq.(36) we obtain the following analytic

estimate for the matching interval; M = S Ewal= (M, To /m,T;) Y2, (42)
y2i<1— £<1_ (40)  Assuming a hydrogen plasma wiif,=T,; and S=3 yields
Xs Mwan=20. This value ofM,,, is exceedingly large and
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FIG. 9. Matching accuracy |(Zmacr(1)
—Zeomd 1)) {comp(1)| @s a function ofy. All the
calculations are performed witB=0.502. (All
the plotted quantities are dimensionlgss.

Matching accuracy

¥ 210

clearly violates ion energy conservation; therefore, result VI. DISCUSSION AND CONCLUSIONS

(42) must be rejected. It is of interest, however, to under- . - .
. . | . In this paper, we have revisited the physics of the bound-
stand what goes wrong in this case. As we pointed out in

Sec. |, the fluid model is not complete: the concept of float-2Y layers that form in plasmas near solid surfaces. As a

. o S .. consequence of the high mobility of the electrons relative to
ing potential is borrowed from kinetic theory. The point is : . ;

o S that of the ions, the solid surface naturally acquires a nega-
that the kinetic prescriptiorf,,.= {i0at MUst be usedo- . .

. L . tive voltage, as large as a few timd@s/e for the case of
getherwith the kinetic result that the potential drops by a . . . . .
value O(Zye,) Over a distance of the order of the Deb eroatmg potential. This negative voltage accelerates the ions

floa . . - Y€ {0 velocities exceeding the thermal spe@dach numbers
length. Therefore, in the limit where the collisional mean

. - >1).
free path is larger than the Debye length, the validity of the Our investigation has adopted a simplified two-fluid

fluid model stops a few Debye lengths from the wall, as theyqqe for the plasma, with the concept of floating potential
model cannot allow spatial variations below. Thus the  porrowed from kinetic theory. Clearly, our model is not
boundary value/={y for the fluid equations must be in- physically complete; however, it is useful in that it illustrates
tended as the value of the potential a few Debye lengths fromaasic features of the relevant processes and reduces the
the wall. The appropriate value must be such tMgf, re-  mathematical treatment to the essential.

mains of order unity, although valués, ;=1 are allowed. From a mathematical point of view, under stationary con-
Unfortunately, the present model cannot determine the exaditions the model reduces to a nonlinear boundary value
value of {4 to be used in the viscous limit. problem for the electrostatic potential, with the ion source
o514 T T T T T T T T T
aswzr T
Complete

o5

FIG. 10. Source as a function of the wall po-

Matching
. tential at fixedy=3x10"2. A comparison of the

S osmal
results obtained by integration of the complete
equation and by matching techniques is shown.
— i (All the plotted quantities are dimensionless.
[ L.ed 2 “
o050 1 1 1 J. 1
[a1-3.] o] o ] or ors [e}:] [} ] o9 0I5 1 1.05
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TABLE I. Values of the characteristic parameters of the edge region for different types of plagia.
the connection length, the distance between the solid walls measured along the magnetic field. The other
parameters are defined in the tefdll the plotted quantities are dimensionless.

ALCATOR Plasma
JET DITE C processing

Te(eV) 50 15 7 1
ne (cm™3) 4% 10 3x 102 4% 10 100
L.(cm) 4x10° 4X107 10 50
\i (cm) 6.4¢ 107 76 1 13
\p (cm) 2.6x10°3 1.7x10°3 3x10°* 7.5x10°4
w(gemisTd 2.8x1072 1.4x10°3 2.1x1074 2.1x10°8
& 6.5x10°7 4.3x10°°© 3x10°°© 1.5x10°°
Y 1.1x10°* 1.3x10°* 8.5x10 3 1.8x10°*

playing the role of the eigenvalue to be determined as dimit are marginally valid with respect to the considered vis-
function of the wall potential. More precisely, we have con-cosity diffusion operator. This operator is derived under the
sidered two types of ion sourceSs=const andS=\n, with  assumption that the collisional mean free path is not larger
n the normalized ion density and the proportionality constanthan any other characteristic length in the plasma, while we
\ the eigenvalue for this second choice. A useful result ishave found that the width of the viscous boundary layer is in
that the obtained solutions are quantitatively very similar infact of the order of;. An alternative way of justifying a
the two cases. diffusion operator for the transport of plasma momentum
The boundary value problem has been integrated numerdensity is by consideration of turbulent transport processes.
cally. We have also found approximate solutions by meanSuppose that fluctuations introduce a random scattering of
of asymptotic matching techniques. We have shown that, ithe ion trajectories, which can be modeled as a random walk
order to apply these techniques rigorously, a minimal equaprocess. Then the turbulent diffusion coefficient becomes
tion must be considered in the boundary layer. This equatione,~m;n;\?/ 7, where\, and , are, respectively, the char-
however, is still nonlinear and too difficult to solve analyti- acteristic correlation length and correlation time of the fluc-
cally; on the other hand, it is much simpler to solve numeri-tuations. Experimental measurements in confined plasmas of
cally than the complete boundary layer problem. The stratthermonuclear interest indicate that transport processes in
egy to obtain approximate solutions over the entire region byhese plasmas are indeed “anomalous,” i.e., they do not fol-
means of thigsay semianalyticapproach is illustrated in the |ow collisional scaling laws. While theoretical understanding
paper. of turbulent transport processes predicting the paramaters
To compare the electrostatic and the viscous limits of theand r, is still elusive, we can rely on experimental measure-
model let us refer to Table I, where values of the relevaninents to obtain a quantitative estimate sof. If L. is the
parameter for three tokamak fusion experimefit6] [the  typical size of the plasmée.g., the connection lengttand
Joint European Tour€JET), the Divertor Injection Tokamak 7. is the experimental value of the momentum density con-
Experiment(DITE), and the ALCATOR C experiment at the finement time, then we can estimaig~m;n;L%/ 7o, The
Massachusetts Institute of Technolgggnd for a typical “anomalous viscosity” scale length for the boundary layer
plasma of industrial interest are considered. We see that, fqjy the wall becomes,~L2/cy7e. Using, for instance, JET
all these plasmas, the ratédy~\p/\; is indeed very small, parameters witfr,,~0.5 sec, we obtaid,~5 cm, which is

which reflects the fact that the Debye length is normallygmgjier than the collisional mean free path, but still much
much smaller than the collisional mean free path. larger than the Debye length.

In the viscous limit, the singularity developed by the ideal
equations in correspondence of the region where the Mach
number reaches unity is resolved by viscosity. Thus the dis- ACKNOWLEDGMENTS
tance from the wall wher&l reaches unity is of the order of _ _ _
the ion collisional mean free path, which can be as large as This work was supported in part by the National Research
10% of the connection lengtithe distance, R, between the Councn(CN_R) .of Italy. Discussions with Drs. A. Taroni and
two plates in the model; see Tablg This should be of S. Krasheninnikov are gratefully acknowledged.
interest, for instance, in the modeling of the edge region of
tokamak plasmas, the so calledrape-off layerin fact, the
modelling is often based on fluid codésuch as the code
EDGE2D adopted at JET17]) which neglect the boundary In this appendix we present the derivation of E2p). By
layer and assume the boundary conditMr=1 at the edge using the new variablé= (x—Xxs)/S, model equation$7)—
of the integration region. This procedure is justified if the (9) take the forms
boundary layer is very thin; however, this procedure would
be questionable if the plasma region whiteexceeds unity
could become a considerable fraction of the scrape-off layer. i(nM) — &S (A1)
Nevertheless, we point out that results for the viscous dé '
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dm d¢ whereC andD are obviously the integration constants. Un-
n(§)M(§)d—§= —nd—g—ssM(é), (A2)  fortunately, it turns out that EqA9) and (A10) do not
reproduce the behavior of the ideal solution at the limit of the
d2¢ ideal region; therefore, they cannot be used for asymptotic
d—gzzexqg(g)]—n(g). (A3)  matching purposes. To obtain a smooth match we must re-

tain terms up to orde®?2 To this end, we expand the ex-
pressions foM and{ in the ideal region in powers af. We

The continuity equatiofAl) can be easily integrated to give
v eq AL y g g obtain the following expressions:

N(EM(€)=3+eS¢, (Ad)
while Eq. (A2) can be rewritten in the energy conservation M(£)~ 2n(¢) ~1-2(-%e§)'?, (A1)
form
d /1 M(¢§) 1l\/lz(f)%~—(—5<s§)1’2 (A12)
— [ ZMm2 — '
dg(zM <§>+z<§>) $STE (A5) 2" g

) ] ) If we substitute the last expressions in EGS5) and (A8),
We now look for a suitable form of the Poisson equation. Toe can obtain two equations corresponding to E48) and

this aim, we multiply equatiofA3) by dZ/dé: (A10):
d 1/dZ\? d 1 1 d¢ S d¢ 1 16
d—gg(@) “ae®" 2w de "M de SMZE)+ (8= —2Sef— 5 (~Se£)ID,
A6 (A13)
By dividing (A2) by the productn(¢)M (&), we obtain an 1/dz\2 1
expression for the potential derivative: > ( d_g) =el® ¢ > M(&)+Seé+2(—Seé)¥2+C.
1 d¢ dMm . S A7) (A14)
T T oL 3. o2 TE&€ /(.
M(§) d¢  d¢ n(é) Equations(A13) and (Al14) allow a good matching with the

ideal solution. They are valid in the last part of the ideal
region (¢<0), while Egs.(A9) and (A10) refer to the inner
part of the boundary layer. We can put the two expressions

We now use Eq(A7) to eliminate the term (M)d{/d¢ in
Eq. (A6). The result is

d 1/d¢\?2 d o 1 1 S in a more compact form by introducing the Heaviside func-
d_gi(d_f) =d—§(e +EM(§)>+§8@ tion:
1, y>0
S d¢ 0(y)=[ (A15)
—Smfd—g. (A8) 0, y<o0.

From Egs.(A5) and (A8), we can derive a model for the Then we write

boundary layer. In the inner part of the electrostatic sheath, a 1

16
suitable approximation is obtained simply by neglecting all §M2(§)+g(§)= 0(—5)[—2585— 3(—58@3/2} +D,

the terms multiplied by the small parameterlt is easy to
S 4 . (A16)
perform a first integration, and to write
L(d)® ! S ey Tmer+ - oS+ 2~ e C
E(d_g) =eg("¢)+§M(§)+C, (A9)  2\dé 2 '
(A17)
1 Finally, eliminating the ion velocity from Eq9A16) and
—M 2 4 =D Al Y, : g - y q
2 (£)+4(8) ’ (A10) (A17), we obtain Eq(29) in the main text.
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